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Small-scale intermittency in randomly stirred fluids
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Starting with a self-consistent renormalized diagrammatic perturbation theory as obtained from
Navier-Stokes equation with a random stirring force, we find that vertex renormalization, as it becomes
increasingly important at smaller scales, introduces intermittency corrections through a renormalization
of the velocity field. Intermittency is found to appear through an additional (“collision””) mechanism of
formation and subsequent breakdown of large scales. The result supports the refined local-scaling laws
in a modified sense. The third hypothesis of log-normality is found to be untenable.

PACS number(s): 47.27.Gs

The theoretical study of locally isotropic fully
developed turbulence [1] visualizes that energy is injected
to the turbulent fluid at a mean rate of € at some macro-
scale L which cascades down to smaller and smaller
scales without dissipation (viscosity being irrelevant in
the process) and finally, at some microscale
No=(v3/&)174, viscosity (vy= kinematic viscosity) begins
to dissipate the energy into heat. The first analytical ap-
proach to this problem was made by Kolmogorov and
Obukhov [1] in the form of two similarity hypotheses
(KO41). The first hypothesis assumes € to be the only
cascade parameter, while the second leads to the univer-
sality of the proportionality constants in the scaling laws
(see below) in the limit of zero viscosity [or infinite Rey-
nolds number R =(L /7,)*/?] and predicts the existence
of an inertial range where the scaling laws are valid. We
shall define the local velocity difference over a displace-
ment r as

u(x+r)—u(x)=A,u(x) .

Then, from dimensional analysis, KO41 gives the follow-
ing scaling law:

<IA,H(X)|">=C,1€"/3V"/3 (1)

in the inertial range 7,<<r <<L. The angular brackets
denote an ensemble average and C, are universal con-
stants. Soon after (in 1944), Landau [1] questioned the
universality of C,, observing that the energy dissipation
rate is a fluctuating quantity, while KO41 assumes a uni-
form value € throughout the space. Experiments [2] also
did not support this universality.

This led Kolmogorov and Obukhov [3] to put forward
a refined version (K0O62) of the old KO41 hypotheses. In
order to account for the intermittent character of dissipa-
tion, they defined a local dissipation rate,

€, (x+y)d3y , )

€,.(x)=
lyl=r

B 4qp3
averaged over a sphere of radius r around the point x.
They hypothesized that KO41 is still locally valid (replac-
ing € by €,) provided one chooses a conditional statistical
ensemble (CSE) selecting only those events for which e,
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takes a given value (denoted by the subscript €, below).
By similar dimensional analysis, KO62 gives

(1Aux|"), =C,fe,}"r" ", 5

where C, are universal constants for the local microscale
1, =(v3/€,)!’* tending to zero.

Kraichnan [4] objected to this refinement, arguing that
the first refined hypothesis is only one of many logical al-
ternatives. He further argued that €,(x), being the in-
tegral of a dissipation scale quantity, cannot be used as a
cascade parameter. Quite contrary to this objection, a
very recent experiment [5] suggests the validity of the
above local scaling law [Eq. (3)] and approximate univer-
sality of C,,.

Further, in order to get a global scaling law, one must
average over the spatial distribution of €,(x). Kolmo-
gorov and Obukhov [3] introduced a third hypothesis,
which assumes that the logarithm of €, is normally distri-
buted (hypothesis of log-normality). However, Mandel-
brot showed that log-normality is inconsistent [6], and a
slight departure from log-normality leads to widely
different results [7]. It has also been found to be incon-
sistent with recent experiments [8,9].

In the present work, we prove that the Navier-Stokes
equation is capable of producing intermittancy correc-
tions. We find, unlike the usual renormalization-group
(RG) theory of turbulence [10—12], that vertex renormal-
ization cannot be ignored a priori as it becomes increas-
ingly important at smaller scales, which leads to a renor-
malized velocity field and gives rise to intermittency
corrections. Requiring dimensional self-consistency on
Wyld’s perturbation theory [13] and replacing €,(x) by a
local flux (a local cascade parameter, as required by
Kraichnan [4]), we check the validity of the refined local
scaling law [Eq. (3)], which serves as a theoretical check
over the corresponding experimental check [5]. An inter-
pretation of the vertex diagrams leads to a physical
mechanism for the appearance of intermittency which is
similar to a mechanism recently conjectured by Kuznet-
sov, Newell, and Zakharov [23]. Based on the local scal-
ing obtained for the local flux, we also find that the hy-
pothesis of log-normality is untenable.
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We consider the randomly stirred model of Forster,
Nelson, and Stephen (FNS) [10] for an incompressible
fluid. This model has been used for obtaining various
universal numbers through RG calculations for the Kol-
mogorov (KO41) case [11,12]. In this model the
Fourier-transformed Navier-Stokes equation assumes the
form

(—iw+vokHu,(k,0)
_fi(k,w)~TPiﬂ(k)

d% do' , ,
X f—_(Zﬁ)d+1 u;(p,0 u(k—p,0—a'),
(4)

where d is the dimensionality of the space, Ay(=1) is the
perturbative parameter (coupling constant) representing
the mode-interaction vertex, and

with
P(k)=(8; —k;k; /k?) .

The random force is assumed to have a Gaussian white-
noise statistics with correlation

(f,»(k,co)fj(k',a)'))

2D, (2m)? ! , )
—WS(k—!—k ¥(o+e")P;k), (5)
where y is a free parameter.

A systematic diagrammatic perturbation theory was
first set up by Wyld [13] treating (—iw+vok?) ™! as the
bare propagator G(k,w) and the nonlinear term in Eq.
(4) as perturbation. Similar to methods used in quantum
field theory, he carried out a partial sum of the series
which amounts to replacement of the bare quantities by
their dressed equivalents in the irreducible diagrams [14].
The renormalized expansion (up to the lowest loop order)
has been shown in Figs. 1 and 2. They actually represent
integral equations for the dressed viscosity v(k) and the
dressed coupling constant A(k). However, FNS [10] have
shown that the vertex diagrams [Figs. 2(b), 2(c), and 2(d)]
add up to zero in the limit k <<k’, where k and k’ are
external and (independent) internal wave numbers, re-
spectively. However, a Taylor expansion in k /k’ sug-
gests that the higher orders in k /k’ are nonzero, leading
to the conclusion that in the limit k —k’, the vertex con-
tribution cannot be neglected a priori [15] and that it be-

FIG. 1. Renormalization of viscosity. An arrow is a velocity
line; two arrows meeting head on denote a velocity correlation.
A solid line represents the propagator. The small open circles
are renormalized vertices.

—(<= <+ <+ {+ ‘{
(a) (b) (c) (d)

(A)

FIG. 2. Vertex renormalization: The loop diagrams (b), (c),
and (d) renormalize the bare vertex, represented by the black
dot in diagram (a). The lines and the small open circles have the
same description as in Fig. 1.

comes increasingly important at smaller and smaller
scales, corresponding to the increasing importance of
higher-order terms in the Taylor expansion in k/k’.
Therefore, as intermittency is prominent at small scales,
we cannot use the large-scale limit k£ <<k’; in order to get
a correct small-scale behavior, we must consider the re-
normalization of the vertex. Then, similar to the
methods used in the theory of critical phenomena, we
determine the scaling dimensions z and o of

w(k)=v(k)k?>~k? and AMk)~k® (6)

from dimensional self-consistency of the integral equa-
tions in Figs. 1 and 2. Now, each vertex has a dimension
of [14+ 0], each propagator (solid line) has the dimension
of inverse frequency [ —z], and a velocity correlation (two
arrows meeting head on) has [—2z][—d +4—y].
Neglecting the bare viscosity, the loop diagram in Fig. 1
has two vertices [2+20 ], one propagator [ —z], and one
velocity correlation [ —2z][ —d +4—y]. There are also
integrations over one independent wave vector and one
frequency contributing [d][z]. The total dimension of
the loop is, therefore, [20—2z+6—y], which must
match the dimension [z] of w(k) on the left for a self-
consistent theory. This gives

—H_Y 20

z=2 3 + 3 (7
Similarly, neglecting the bare coupling constant A, in Fig.
2, we see that each loop has three vertices [3+30 ], two
propagators [—2z], and one correlation
[—2z][—d +4—y]. Integrations over one independent
wave vector and frequency contribute [d][z]. The total
dimension [30—3z+7—y], when matched with the
dressed vertex [1+o0] on the left, indeed reproduces the
result of Eq. (7), verifying dimensional self-consistency of
the theory [16].

Now, the renormalized Navier-Stokes equation can be
obtained from the bare one [Eq. (4)] by replacing vyk2 by
o(k)=v(k)k? and A, by A(k). Further, writing u =Zv
and attempting to put this equation in the original form
[Eg. (4)], we obtain Z (k)=1/A(k), leading to a modified
equation for the renormalized velocity v:

[—io+tolk)y (ko)

d%do’
(zﬂ,)d+1
Xv(k—p,0—a"), (®)

= AR, (k,0) = =Py (k) [ S, (P’
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with a modified but dimensionless vertex coupling factor
Sip=Ak)/Mp)Mk—p]) .

Notice that the renormalized propagator and viscosity
remain unchanged. Now the energy spectrum E (k) is
given by [17]

E(k)~k?"! [ do|G(k,w)?A%(k)
X{(fik,0)fi(—k,—w)) , 9)
which has a dimension of
[d —1][z][ —2z][20 ][ —d +4—y],
which, using Eq. (7), amounts to
E(k)~k!~2/3+40/3 (10)

Since Eq. (8) looks the same as the original equation [Eq.
(4)] apart from a dimensionless factor in the interaction
term, the energy transfer equation will have the same
form as that given by the eddy-damped quasinormal Mar-
kovian closure [18]:

(8, +2vok2)E (k,t)=T (k,t)+F (k,t) ,

with the transfer integral T'(k,¢) having the same dimen-
sion of k3E*X(k)/w(k) in the steady state.

Kraichnan [19] introduced a flux I1(j,¢)= f;" T (k,t)dk
in the inertial range signifying the energy transfer rate
from modes k£ <j to modes k >j. Making use of the
power laws obtained from Egs. (10), (7), and (6), we ob-
tain

M(k)~k*y+20 (11)

in the steady state.

Now, o can, in principle, be determined (in terms of y)
through a proper RG scheme [20]. We shall, however,
consider that fixing y at a numerical value leads to
artificial results [21]. Writing 4—y +20 = —a and using
Egs. (6), (7), (10), and (11) leads to

w(k)~—1/3k2/3(kL)*a/3 , (12)
E(k)~?2/3k_5/3(kL)—2“/3 , (13)
I(k)~&kL) %, (14)

where € and L have been introduced in order to match
the physical dimension on the left-hand sides.

We now turn to find the dimension of the nth-order (re-
normalized) velocity correlation from Fig. 3. In this dia-
gram each vertex has a dimension of [1], each propagator
has the dimension of inverse frequency [ —z], and each
force correlation (denoted by a pair of triangular arrow-
heads) has a dimension[20—d +4—y]. There are =
external propagators [ —nz], n vertices [n], 2n internal
propagators [—2nz], and n force correlations
[2no —nd +4n —ny]. Further, there are integrations
over one independent internal wave vector and frequency
contributing [d +2z]. The total dimension of this diagram
is therefore [—3nz +2no—nd +5n —ny +d +z]. The
r-dependent structure function has the dimension of the
Fourier transform of this diagram, which amounts to in-
tegrations over (n — 1) independent external wave vectors
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FIG. 3. The nth-order renormalized velocity correlation.

Each triangular arrowhead represents A(k)f (k). The black dots
are redefined vertices, as described in the text.

and frequencies. This gives a  contribution
[(n —1)(d +z)]. The dimension of the structure function
is therefore [(—2z +20 +5—y)n], which upon using Eq.

(7), reduces to [(1—y/3+4+20/3)n]. Thus, for
y =4+ 20 +a, the structure function scales as
na/3
(IA,v(x)[”)~€”/3r”/3 % , (15)

where € and L serve to match the physical dimension on
the left.

We now define a local flux
_ 1

K drd lyl<r

,(x) (x+y)d% (16)

into a sphere of radius r with x as center. K, is the
volume of a unit sphere embedded in the d-dimensional
space.

In our dimensional arguments, the presence of o did
not affect the ensemble averages. This can be assumed to
have been achieved by choosing a proper CSE, selecting
only those events for which o (or, equivalently, y, or a)
takes a certain value. One can assume a CSE for each
point x in space. From Eq. (14) we then write
a[x]

> 17

signifying a to be a local quantity [22]. Because energy
must be conserved in the cascade, the global average (i.e.,
summation over all space) of II, must equal €, which sets
a constraint on the spatial distribution (not obtainable
from the present method) of a. In this light, the left of
Eq. (15) is an average over local CSE. This equation, to-
gether with Eq. (17), gives us

(A V(x)|") = CL (T, (x)} /3173 (18)

which is the same scaling as Eq. (3) with the local dissipa-
tion replaced by the local flux and C, are constants in-
dependent of r. The local CSE is defined with respect to
a given local value of a. Further, in order to get global
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scaling laws, we must take a global average over Eq. (18)
with a proper spatial distribution of «. This would lead
to intermittency corrections on the spatially homogene-
ous KO41 results [Eq. (1)].

In this derivation we see that the cascade parameter
automatically appears in the scaling Eq. (18), which was
earlier argued to be the only relevant quantity in the cas-
cade rather than the local dissipation [4]. Following this
replacement, the derivation of Eq. (18) can be considered
as a theoretical proof of the refined scaling laws Eq. (3).
The latter is also supported by the experiment in Ref. [5].

However, our dimensional arguments cannot verify the
universality of the constants C, in Eq. (3), which requires
actual evaluation of the loop integrals. It is practically
impossible to find a way to extract the vertex correction
in the limit kK —k’, and hence our method of dimensional
power counting tells only about the local scaling laws
without giving any clue as to the universality of the con-
stants of proportionality C,. Since our methods are
based on power counting, C, cannot depend on r. How-
ever, it is possible that they depend on a, which is a free
(random) parameter. In that case, the global scaling laws
would be obtained by taking a global average over
C, 11"/3 instead of just over I1"/3.

Further, unlike Kolmogorov and Obukhov’s definition
of the local microscale 7,, which absurdly depends on r,
one needs to define an r-independent local microscale. A
more promising definition is the scale at which the
viscous time catches up with the eddy turnover time, i.e.,
wlky)~vyk3, with k;~1/n the dissipation wave num-
ber. Using Egs. (12) and (17), we get

1/4
vo

IL,

n~ (19)

The local velocity scale
Ur(X)~ {Hr(x)} 1/3r1/3

is obtained from Eq. (18), setting n =2. This defines a lo-
cal microscopic Reynolds number R,(x)=U,(x)r/v,.
The local microscale in Eq. (19) can also be obtained from
R, and U, by requiring R ,(x)~1 for any x, which also
leads to

RY*~(r/no)(r /L)%,

where 1,=(v}/€)!/%, the (unphysical) Kolmogorov mi-
croscale. By setting r =L, we get another definition
Mo~L /R}’*, where R; is the macroscopic Reynolds
number. Using this and Eq. (17) in Eq. (19), we obtain

n(a)~L /R}/ 4+ (20)

The assumption of log-normality is equivalent to as-
suming that a has a normal distribution, with a running

from —o to + . From Eq. (20) it is seen that as
a— —4 from above, n— 0, which is an allowed limit. On
the contrary, as a— —4 from below, 17— o0, whereas in
both the limits a— * oo, the dissipation scale p—L,
which are unphysical limits meaning that dissipation can
occur even at the macroscopic scale L. This leads to un-
physicalness of the hypothesis of log-normality. Further
limits on a can hopefully be obtained through a proper
RG scheme requiring stability of the fixed point and from
the marginal values of y.

Now, in order to get a physical mechanism of how in-
termittency can arise, we consider the loop diagrams.
The loop in Fig. 1 represents a contribution from the
well-known “spontaneous” breakdown of an eddy into
two smaller offspring eddies, signifying a direct cascade
of energy [Fig. 2(a) represents this process]. The parent
eddy loses all its energy and hence feels a ““viscous dissi-
pation.” Thus the eddy-breaking process is responsible
for the renormalization of viscosity, which alone pro-
duces the Komogorov scaling law [Eq. (1)]. In this light,
Fig. 2(b) would represent an eddy breaking into two, fol-
lowed by a collision between them, while Figs. 2(c) and
2(d) are complex eddy-breaking processes, finally produc-
ing two eddies each. We shall designate Figs. 2(b), 2(c),
and 2(d) as ““collisions.” In the limit of dominant internal
wave vector over the external, b +¢ +d =0, while in the
opposite limit, b +¢ +d+*0 (discussed earlier). In the
latter limit, a closer look at Fig. 2(b) reveals that a small
eddy produces two larger eddies (an inverse cascade) at
the first vertex, which collide with each other (with an ex-
change of wave vector through the velocity correlation
leg) forming two smaller eddies (a direct ‘“‘cascade”).
Similarly, processes represented in Figs. 2(c) and 2(d) are
capable of producing small eddies through formation and
subsequent breakdown of large scales. (The words
“small” and ‘“‘large” are relative terms.) These three are
additional processes [in addition to the ‘“‘spontaneous”
eddy breakings associated with Fig. 2(a)] and, as we have
seen in our dimensional analysis, they account for the ap-
pearance of intermittency at small scales. A similar
mechanism has recently been conjectured by Kuznetsov,
Newell, and Zakharov [23] which visualizes an inverse
cascade toward large scales associated with an additional
conserved quantity. The large-scale structures so formed
are unstable and result in an additional cascade toward
small scales which accounts for intermittancy. It would
be worthwhile to look for a relation between this mecha-
nism and the one presented in this work.
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